Optimization-Based Approach for Joint X-Ray Fluorescence and Transmission Tomographic Inversion

نویسندگان

  • Zichao Di
  • Sven Leyffer
  • Stefan M. Wild
چکیده

Fluorescence tomographic reconstruction, based on the detection of photons coming from fluorescent emission, can be used for revealing the internal elemental composition of a sample. On the other hand, conventional X-ray transmission tomography can be used for reconstructing the spatial distribution of the absorption coefficient inside a sample. In this work, we integrate both X-ray fluorescence and X-ray transmission data modalities and formulate a nonlinear optimization-based approach for reconstruction of the elemental composition of a given object. This model provides a simultaneous reconstruction of both the quantitative spatial distribution of all elements and the absorption effect in the sample. Mathematically speaking, we show that compared with the single-modality inversion (i.e., the X-ray transmission or fluorescence alone), the joint inversion provides a better-posed problem, which implies a better recovery. Therefore, the challenges in X-ray fluorescence tomography arising mainly from the effects of self absorption in the sample are partially mitigated. The use of this technique is demonstrated on the reconstruction of several synthetic samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint reconstruction of x-ray fluorescence and transmission tomography.

X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation i...

متن کامل

Joint inversion of ReMi dispersion curves and refraction travel times using particle swarm optimization algorithm

Shear-wave velocity ( ) is an important parameter used for site characterization in geotechnical engineering. However, dispersion curve inversion is challenging for most inversion methods due to its high non-linearity and mix-determined trait. In order to overcome these problems, in this study, a joint inversion strategy is proposed based on the particle swarm optimization (PSO) algorithm. The ...

متن کامل

Numerical model for tomographic image formation in transmission x-ray microscopy.

We present a numerical image-formation model for investigating the influence of partial coherence, sample thickness and depth-of-focus on the accuracy of tomographic reconstructions in transmission x-ray microscopes. The model combines wave propagation through the object by finite difference techniques with Fourier methods. We include a ray-tracing model to analyse the origin of detrimental str...

متن کامل

Statistical inversion for medical x-ray tomography with few radiographs: II. Application to dental radiology.

Diagnostic and operational tasks in dental radiology often require three-dimensional information that is difficult or impossible to see in a projection image. A CT-scan provides the dentist with comprehensive three-dimensional data. However, often CT-scan is impractical and, instead, only a few projection radiographs with sparsely distributed projection directions are available. Statistical (Ba...

متن کامل

Joint-MAP Bayesian tomographic reconstruction with a gamma-mixture prior

We address the problem of Bayesian image reconstruction with a prior that captures the notion of a clustered intensity histogram. The problem is formulated in the framework of a joint-MAP (maximum a posteriori) estimation with the prior PDF modeled as a mixture-of-gammas density. This prior PDF has appealing properties, including positivity enforcement. The joint MAP optimization is carried out...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Imaging Sciences

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016